3 research outputs found

    A Facet-Based Numerical Model for Simulating SAR Altimeter Echoes from Heterogeneous Sea Ice Surfaces

    Get PDF
    Cryosat-2 has provided measurements of pan-Arctic sea ice thickness since 2010 with unprecedented spatial coverage and frequency. However, it remains uncertain how the Ku-band radar interacts with the vast range of scatterers that can be present within the satellite footprint, including sea ice with varying physical properties and multi-scale roughness, snow cover, and leads. Here, we present a numerical model designed to simulate delay-Doppler SAR (Synthetic Aperture Radar) altimeter echoes from snow-covered sea ice, such as those detected by Cryosat-2. Backscattered echoes are simulated directly from triangular facetbased models of actual sea ice topography generated from Operation IceBridge Airborne Topographic Mapper (ATM) data, as well as virtual statistical models simulated artificially. We use these waveform simulations to investigate the sensitivity of SAR altimeter echoes to variations in satellite parameters (height, pitch, roll) and sea ice properties (physical properties, roughness, presence of water). We show that the conventional Gaussian assumption for sea ice surface roughness may be introducing significant error into the Cryosat-2 waveform retracking process. Compared to a more representative lognormal surface, an echo simulated from a Gaussian surface with rms roughness height of 0.2 m underestimates the ice freeboard by 5 cm – potentially underestimating sea ice thickness by around 50 cm. We present a set of ‘ideal’ waveform shape parameters simulated for sea ice and leads to inform existing waveform classification techniques. This model will ultimately be used to improve retrievals of key sea ice properties, including freeboard, surface roughness and snow depth, from SAR altimeter observations

    Snow property controls on modelled Ku-band altimeter estimates of first-year sea ice thickness: Case studies from the Canadian and Norwegian Arctic

    Get PDF
    Uncertainty in snow properties impacts the accuracy of Arctic sea ice thickness estimates from radar altimetry. On firstyear sea ice (FYI), spatiotemporal variations in snow properties can cause the Ku-band main radar scattering horizon to appear above the snow/sea ice interface. This can increase the estimated sea ice freeboard by several centimeters, leading to FYI thickness overestimations. This study examines the expected changes in Kuband main scattering horizon and its impact on FYI thickness estimates, with variations in snow temperature, salinity and density derived from 10 naturally occurring Arctic FYI Cases encompassing saline/non-saline, warm/cold, simple/complexly layered snow (4 cm to 45 cm) overlying FYI (48 cm to 170 cm). Using a semi-empirical modeling approach, snow properties from these Cases are used to derive layer-wise brine volume and dielectric constant estimates, to simulate the Ku-band main scattering horizon and delays in radar propagation speed. Differences between modeled and observed FYI thickness are calculated to assess sources of error. Under both cold and warm conditions, saline snow covers are shown to shift the main scattering horizon above from the snow/sea ice interface, causing thickness retrieval errors. Overestimates in FYI thicknesses of up to 65% are found for warm, saline snow overlaying thin sea ice. Our simulations exhibited a distinct shift in the main scattering horizon when the snow layer densities became greater than 440 kg/m3 , especially under warmer snow conditions. Our simulations suggest a mean Ku-band propagation delay for snow of 39%, which is higher than 25%, suggested in previous studies
    corecore